Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 44(6): 1201-1214, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33591430

RESUMO

The anaerobic digestion performance correlates with the functional microbial community. Mesophilic and thermophilic digestions of vegetable waste were conducted, and dynamics of the microbial community were investigated. The mesophilic and thermophilic collapsed stages occurred at organic loading rates of 1.5 and 2.0 g VS/(L d) due to the accumulation of volatile fatty acids with final concentrations of 2276 and 6476 mg/L, respectively. A high concentration of volatile fatty acids caused the severe inhibition of methanogens, which finally led to the imbalance between acetogenesis and methanogenesis. The mesophilic digestion exhibited a higher microbial diversity and richness than the thermophilic digestion. Syntrophic acetate-oxidizing coupled with hydrogenotrophic methanogenesis was the dominant pathway in the thermophilic stable system, and acetoclastic methanogenesis in the mesophilic stable system. The dominant acidogens, syntrophus, and methanogens were unclassified_f__Anaerolineaceae (8.68%), Candidatus_Cloacamonas (19.70%), Methanosaeta (6.10%), and Methanosarcina (4.08%) in the mesophilic stable stage, and Anaerobaculum (12.59%), Syntrophaceticus (4.84%), Methanosarcina (30.58%), and Methanothermobacter (3.17%) in thermophilic stable stage. Spirochaetae and Thermotogae phyla were the characteristic microorganisms in the mesophilic and thermophilic collapsed stages, respectively. These findings provided valuable information for the deep understanding of the difference of the microbial community and methane-producing mechanism between mesophilic and thermophilic digestion of vegetable waste.


Assuntos
Bactérias Anaeróbias , Euryarchaeota , Microbiota , Verduras/microbiologia , Anaerobiose , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/crescimento & desenvolvimento , Euryarchaeota/classificação , Euryarchaeota/crescimento & desenvolvimento
2.
Astrobiology ; 19(10): 1187-1195, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31173512

RESUMO

Observational evidence supports the presence of methane (CH4) in the martian atmosphere on the order of parts per billion by volume (ppbv). Here, we assess whether aerobic methanotrophy is a potentially viable metabolism in the martian upper regolith, by calculating metabolic energy gain rates under assumed conditions of martian surface temperature, pressure, and atmospheric composition. Using kinetic parameters for 19 terrestrial aerobic methanotrophic strains, we show that even under the imposed low temperature and pressure extremes (180-280 K and 6-11 hPa), methane oxidation by oxygen (O2) should in principle be able to generate the minimum energy production rate required to support endogenous metabolism (i.e., cellular maintenance). Our results further indicate that the corresponding metabolic activity would be extremely low, with cell doubling times in excess of 4000 Earth years at the present-day ppbv-level CH4 mixing ratios in the atmosphere of Mars. Thus, while aerobic methanotrophic microorganisms similar to those found on Earth could theoretically maintain their vital functions, they are unlikely to constitute prolific members of hypothetical martian soil communities.


Assuntos
Meio Ambiente Extraterreno , Marte , Metano/metabolismo , Aerobiose , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/metabolismo , Cinética , Oxirredução , Temperatura
3.
ISME J ; 13(8): 2107-2119, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31040382

RESUMO

Methyl substrates are important compounds for methanogenesis in marine sediments but diversity and carbon utilization by methylotrophic methanogenic archaea have not been clarified. Here, we demonstrate that RNA-stable isotope probing (SIP) requires 13C-labeled bicarbonate as co-substrate for identification of methylotrophic methanogens in sediment samples of the Helgoland mud area, North Sea. Using lipid-SIP, we found that methylotrophic methanogens incorporate 60-86% of dissolved inorganic carbon (DIC) into lipids, and thus considerably more than what can be predicted from known metabolic pathways (~40% contribution). In slurry experiments amended with the marine methylotroph Methanococcoides methylutens, up to 12% of methane was produced from CO2, indicating that CO2-dependent methanogenesis is an alternative methanogenic pathway and suggesting that obligate methylotrophic methanogens grow in fact mixotrophically on methyl compounds and DIC. Although methane formation from methanol is the primary pathway of methanogenesis, the observed high DIC incorporation into lipids is likely linked to CO2-dependent methanogenesis, which was triggered when methane production rates were low. Since methylotrophic methanogenesis rates are much lower in marine sediments than under optimal conditions in pure culture, CO2 conversion to methane is an important but previously overlooked methanogenic process in sediments for methylotrophic methanogens.


Assuntos
Dióxido de Carbono/metabolismo , Euryarchaeota/fisiologia , Metano/metabolismo , Methanosarcinaceae/fisiologia , Biomassa , Carbono/metabolismo , Euryarchaeota/crescimento & desenvolvimento , Sedimentos Geológicos , Metanol/metabolismo , Methanosarcinaceae/crescimento & desenvolvimento , Mar do Norte
4.
FEMS Microbiol Ecol ; 95(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715248

RESUMO

Previous studies showed that exoelectrogenic bacteria in paddy soil could suppress methanogens and methanogenesis after they were enriched by application of Fe3+ or running microbial fuel cells (MFCs). However, the relationship between exoelectrogenic bacteria and methanogens without the enrichment process is unknown. Our study was conducted in three paddy fields in China and over three seasons. We explored novel MFC-based sensors to in situ detect voltage signals that were generated from paddy soil within 10 min. The voltage and methane emission flux were determined as an indicator of the exoelectrogenic activity and methanogenic activity, respectively. The abundance of exoelectrogenic bacteria was assessed by quantifying five exoelectrogenic bacterial-associated genera including Geobacter, Shewanella, Anaeromyxobacter, Desulfovibrio and Clostridium, while the methanogens were studied by quantifying and sequencing the mcrA gene. The results showed that the abundance of exoelectrogenic bacteria and the voltage signals were positively correlated to the abundance of mcrA gene and methane emission flux, respectively. Moreover, non-metric dimensional scaling reveals that the abundance of Geobacter, Desulfovibrio and Clostridium significantly correlated with that of Methanomassiliicoccus, Methanoregula and Methanolinea. The present study suggests that the voltage signals might act as a novel indicator of methane emission flux in paddy fields.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Metano/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , China , Eletricidade , Biomarcadores Ambientais , Euryarchaeota/classificação , Euryarchaeota/genética , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/metabolismo , Metano/análise , Oryza , Oxirredutases/genética
5.
Sci Rep ; 9(1): 11, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626904

RESUMO

The current research was carried out to determine the associations between the rumen microbiota and traits related with feed efficiency in a Holstein cattle population (n = 30) using whole metagenome sequencing. Improving feed efficiency (FE) is important for a more sustainable livestock production. The variability for the efficiency of feed utilization in ruminants is partially controlled by the gastrointestinal microbiota. Modulating the microbiota composition can promote a more sustainable and efficient livestock. This study revealed that most efficient cows had larger relative abundance of Bacteroidetes (P = 0.041) and Prevotella (P = 0.003), while lower, but non-significant (P = 0.119), relative abundance of Firmicutes. Methanobacteria (P = 0.004) and Methanobrevibacter (P = 0.003) were also less abundant in the high-efficiency cows. A de novo metagenome assembly was carried out using de Bruijn graphs in MEGAHIT resulting in 496,375 contigs. An agnostic pre-selection of microbial contigs allowed high classification accuracy for FE and intake levels using hierarchical classification. These microbial contigs were also able to predict FE and intake levels with accuracy of 0.19 and 0.39, respectively, in an independent population (n = 31). Nonetheless, a larger potential accuracy up to 0.69 was foreseen in this study for datasets that allowed a larger statistical power. Enrichment analyses showed that genes within these contigs were mainly involved in fatty acids and cellulose degradation pathways. The findings indicated that there are differences between the microbiota compositions of high and low-efficiency animals both at the taxonomical and gene levels. These differences are even more evident in terms of intake levels. Some of these differences remain even between populations under different diets and environments, and can provide information on the feed utilization performance without information on the individual intake level.


Assuntos
Ração Animal , Microbioma Gastrointestinal , Rúmen/microbiologia , Animais , Bovinos , Euryarchaeota/crescimento & desenvolvimento , Firmicutes/crescimento & desenvolvimento , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Metagenoma , Methanobrevibacter/crescimento & desenvolvimento , Prevotella/crescimento & desenvolvimento
6.
Braz. j. microbiol ; 49(2): 248-257, Apr.-June 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889237

RESUMO

Abstract In this study for the first-time microbial communities in the caves located in the mountain range of Hindu Kush were evaluated. The samples were analyzed using culture-independent (16S rRNA gene amplicon sequencing) and culture-dependent methods. The amplicon sequencing results revealed a broad taxonomic diversity, including 21 phyla and 20 candidate phyla. Proteobacteria were dominant in both caves, followed by Bacteroidetes, Actinobacteria, Firmicutes, Verrucomicrobia, Planctomycetes, and the archaeal phylum Euryarchaeota. Representative operational taxonomic units from Koat Maqbari Ghaar and Smasse-Rawo Ghaar were grouped into 235 and 445 different genera, respectively. Comparative analysis of the cultured bacterial isolates revealed distinct bacterial taxonomic profiles in the studied caves dominated by Proteobacteria in Koat Maqbari Ghaar and Firmicutes in Smasse-Rawo Ghaar. Majority of those isolates were associated with the genera Pseudomonas and Bacillus. Thirty strains among the identified isolates from both caves showed antimicrobial activity. Overall, the present study gave insight into the great bacterial taxonomic diversity and antimicrobial potential of the isolates from the previously uncharacterized caves located in the world's highest mountains range in the Indian sub-continent.


Assuntos
Bactérias/isolamento & purificação , Bactérias/classificação , Microbiologia Ambiental , Biota , Antibiose , Paquistão , Filogenia , Bactérias/crescimento & desenvolvimento , Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/química , DNA Ribossômico/genética , DNA Ribossômico/química , RNA Ribossômico 16S/genética , Análise por Conglomerados , Análise de Sequência de DNA , Euryarchaeota/isolamento & purificação , Euryarchaeota/classificação , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/genética , DNA Arqueal/genética , DNA Arqueal/química , Metagenômica
7.
Artigo em Inglês | MEDLINE | ID: mdl-29775125

RESUMO

In this study, a continuous flow experiment was conducted in which a lab-scale upflow anaerobic sludge blanket (UASB) reactor at psychrophilic conditions (18-19°C) was fed with artificial wastewater, containing tetramethylammonium hydroxide (TMAH) and isoplophyl alcohol (IPA), from the electronics industry. This was done to evaluate process performance and microbial properties of the granular sludge that was retained in the reactor. The inoculated granular sludge was precultured with IPA containing wastewater but not TMAH; as a result, no degradation was observed in 30 days of operation. To enhance degradation, the reactor was seeded with 2% weight of the TMAH-enriched sludge, after which TMAH was enhanced. Consequently, the total COD removal efficiency reached 90% at an organic loading rate of 7.5 kg COD/m3/day. The TMAH inflow decreased the diameter of the retained granular sludge, but the sludge retained its settleability. The proliferation of the Methanometylovorans microorganisms present in the enrichment culture was confirmed by analysis of the 16 S rRNA gene in the retained sludge. In addition, TMAH degradation was inhibited by addition chloroform, a methanogen inhibitor. These results suggested species in the genus Methanometylovorans in the granular sludge contributed significantly to methanogenic TMAH degradation.


Assuntos
2-Propanol/química , Metano/metabolismo , Compostos de Amônio Quaternário/farmacologia , Esgotos/microbiologia , Águas Residuárias , Aclimatação/efeitos dos fármacos , Anaerobiose/efeitos dos fármacos , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Reatores Biológicos/microbiologia , Etanol/química , Etanolamina/química , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/metabolismo , Metano/química , Temperatura , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Águas Residuárias/microbiologia
8.
BMC Microbiol ; 18(1): 21, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554875

RESUMO

BACKGROUND: This study was conducted to examine effects of nitrate on ruminal methane production, methanogen abundance, and composition. Six rumen-fistulated Limousin×Jinnan steers were fed diets supplemented with either 0% (0NR), 1% (1NR), or 2% (2NR) nitrate (dry matter basis) regimens in succession. Rumen fluid was taken after two-week adaptation for evaluation of in vitro methane production, methanogen abundance, and composition measurements. RESULTS: Results showed that nitrate significantly decreased in vitro ruminal methane production at 6 h, 12 h, and 24 h (P < 0.01; P < 0.01; P = 0.01). The 1NR and 2NR regimens numerically reduced the methanogen population by 4.47% and 25.82% respectively. However, there was no significant difference observed between treatments. The alpha and beta diversity of the methanogen community was not significantly changed by nitrate either. However, the relative abundance of the methanogen genera was greatly changed. Methanosphaera (PL = 0.0033) and Methanimicrococcus (PL = 0.0113) abundance increased linearly commensurate with increasing nitration levels, while Methanoplanus abundance was significantly decreased (PL = 0.0013). The population of Methanoculleus, the least frequently identified genus in this study, exhibited quadratic growth from 0% to 2% when nitrate was added (PQ = 0.0140). CONCLUSIONS: Correlation analysis found that methane reduction was significantly related to Methanobrevibacter and Methanoplanus abundance, and negatively correlated with Methanosphaera and Methanimicrococcus abundance.


Assuntos
Suplementos Nutricionais , Euryarchaeota/metabolismo , Metano/metabolismo , Nitratos/metabolismo , Rúmen/microbiologia , Animais , Biodiversidade , Bovinos , DNA Arqueal , Euryarchaeota/efeitos dos fármacos , Euryarchaeota/genética , Euryarchaeota/crescimento & desenvolvimento , Fermentação , Methanobacteriaceae/efeitos dos fármacos , Methanobacteriaceae/crescimento & desenvolvimento , Methanobacteriaceae/metabolismo , Methanobrevibacter/efeitos dos fármacos , Methanobrevibacter/crescimento & desenvolvimento , Methanobrevibacter/metabolismo , Methanomicrobiaceae/efeitos dos fármacos , Methanomicrobiaceae/crescimento & desenvolvimento , Methanomicrobiaceae/metabolismo , Methanosarcinales/efeitos dos fármacos , Methanosarcinales/crescimento & desenvolvimento , Methanosarcinales/metabolismo , Microbiota/efeitos dos fármacos , Microbiota/genética , Microbiota/fisiologia , Nitratos/farmacologia , RNA Ribossômico 16S/genética
9.
Braz J Microbiol ; 49(2): 248-257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29108974

RESUMO

In this study for the first-time microbial communities in the caves located in the mountain range of Hindu Kush were evaluated. The samples were analyzed using culture-independent (16S rRNA gene amplicon sequencing) and culture-dependent methods. The amplicon sequencing results revealed a broad taxonomic diversity, including 21 phyla and 20 candidate phyla. Proteobacteria were dominant in both caves, followed by Bacteroidetes, Actinobacteria, Firmicutes, Verrucomicrobia, Planctomycetes, and the archaeal phylum Euryarchaeota. Representative operational taxonomic units from Koat Maqbari Ghaar and Smasse-Rawo Ghaar were grouped into 235 and 445 different genera, respectively. Comparative analysis of the cultured bacterial isolates revealed distinct bacterial taxonomic profiles in the studied caves dominated by Proteobacteria in Koat Maqbari Ghaar and Firmicutes in Smasse-Rawo Ghaar. Majority of those isolates were associated with the genera Pseudomonas and Bacillus. Thirty strains among the identified isolates from both caves showed antimicrobial activity. Overall, the present study gave insight into the great bacterial taxonomic diversity and antimicrobial potential of the isolates from the previously uncharacterized caves located in the world's highest mountains range in the Indian sub-continent.


Assuntos
Antibiose , Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Microbiologia Ambiental , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Euryarchaeota/classificação , Euryarchaeota/genética , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/isolamento & purificação , Metagenômica , Paquistão , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Archaea ; 2017: 2756573, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29230105

RESUMO

DNA sequence analysis of the human gut revealed the presence a seventh order of methanogens referred to as Methanomassiliicoccales. Methanomassiliicoccus luminyensis is the only member of this order that grows in pure culture. Here, we show that the organism has a doubling time of 1.8 d with methanol + H2 and a growth yield of 2.4 g dry weight/mol CH4. M. luminyensis also uses methylamines + H2 (monomethylamine, dimethylamine, and trimethylamine) with doubling times of 2.1-2.3 d. Similar cell yields were obtained with equimolar concentrations of methanol and methylamines with respect to their methyl group contents. The transcript levels of genes encoding proteins involved in substrate utilization indicated increased amounts of mRNA from the mtaBC2 gene cluster in methanol-grown cells. When methylamines were used as substrates, mRNA of the mtb/mtt operon and of the mtmBC1 cluster were found in high abundance. The transcript level of mtaC2 was almost identical in methanol- and methylamine-grown cells, indicating that genes for methanol utilization were constitutively expressed in high amounts. The same observation was made with resting cells where methanol always yielded the highest CH4 production rate independently from the growth substrate. Hence, M. luminyensis is adapted to habitats that provide methanol + H2 as substrates.


Assuntos
Euryarchaeota/enzimologia , Euryarchaeota/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Metiltransferases/biossíntese , Euryarchaeota/metabolismo , Hidrogênio/metabolismo , Metanol/metabolismo , Metilaminas/metabolismo , Metiltransferases/genética , Família Multigênica , RNA Mensageiro/análise , RNA Mensageiro/genética
11.
PLoS One ; 12(6): e0178467, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28594863

RESUMO

Throughout the Baltic Sea redoxcline, virus production and the frequency of lytically-infected prokaryotic cells were estimated from parallel incubations of undiluted seawater and seawater that contained prokaryotes with substantially reduced numbers of viruses (virus dilution approach), effectively preventing viral reinfection during the incubation period. Undiluted seawater incubations resulted in much higher estimates of virus production (6-35×104 mL-1 h-1) and the frequency of infected cells (5-84%) than the virus dilution approach (virus production: 1-3×104 mL-1 h-1; frequency of infected cells: 1-11%). Viral production and the frequency of infected cells from both approaches, however, cannot be directly compared, as data obtained from undiluted incubations were biased by viral reinfection and other uncontrollable processes during the incubation period. High in situ viral abundance (1-2×107 mL-1) together with low virus production rates based on the virus dilution approach resulted in some of the longest viral turnover times (24-84 d) ever reported for the epipelagial. Throughout a wide range of environmental conditions, viral turnover time and burst size were negatively correlated. Given that viral decay estimated in ultra-filtered water was below the detection limit and the burst size was low (1-17), we conclude that prokaryotic viruses in the Baltic Sea redoxcline are investing most of their resources into stress defense (strong capsids) rather than proliferation (high burst size). In summary, the Baltic Sea redoxcline constitutes an environment where low virus production is found in combination with low viral decay, resulting in high viral abundance.


Assuntos
Água do Mar/virologia , Vírus/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Biodiversidade , Crenarchaeota/crescimento & desenvolvimento , Euryarchaeota/crescimento & desenvolvimento , Temperatura
12.
PLoS One ; 11(8): e0159760, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27490246

RESUMO

A combination of acetate oxidation and acetoclastic methanogenesis has been previously identified to enable high-rate methanogenesis at high temperatures (55 to 65°C), but this capability had not been linked to any key organisms. This study combined RNA-stable isotope probing on 13C-labelled acetate and 16S amplicon sequencing to identify the active micro-organisms involved in high-rate methanogenesis. Active biomass was harvested from three bench-scale thermophilic bioreactors treating waste activated sludge at 55, 60 and 65°C, and fed with 13-C labelled and 12C-unlabelled acetate. Acetate uptake and cumulative methane production were determined and kinetic parameters were estimated using model-based analysis. Pyrosequencing performed on 13C- enriched samples indicated that organisms accumulating labelled carbon were Coprothermobacter (all temperatures between 55 and 65°C), acetoclastic Methanosarcina (55 to 60°C) and hydrogenotrophic Methanothermobacter (60 to 65°C). The increased relative abundance of Coprothermobacter with increased temperature corresponding with a shift to syntrophic acetate oxidation identified this as a potentially key oxidiser. Methanosarcina likely acts as both a hydrogen utilising and acetoclastic methanogen at 55°C, and is replaced by Methanothermobacter as a hydrogen utiliser at higher temperatures.


Assuntos
Acetatos/metabolismo , Euryarchaeota/crescimento & desenvolvimento , Metano/biossíntese , Methanosarcina/crescimento & desenvolvimento , Thermoanaerobacter/crescimento & desenvolvimento , Acetatos/química , Biomassa , Reatores Biológicos , Isótopos de Carbono , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Euryarchaeota/classificação , Euryarchaeota/genética , Marcação por Isótopo , Cinética , Methanosarcina/classificação , Methanosarcina/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Esgotos/microbiologia , Temperatura , Thermoanaerobacter/classificação , Thermoanaerobacter/genética
13.
Anaerobe ; 39: 173-82, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27060275

RESUMO

Methanogenic archaea (methanogens) are common inhabitants of the mammalian intestinal tract. In ruminants, they are responsible for producing abundant amounts of methane during digestion of food, but selected bioactive plants and compounds may inhibit this activity. Recently, we have identified that, Biserrula pelecinus L. (biserrula) is one such plant and the current study investigated the specific anti-methanogenic activity of the plant. Bioassay-guided extraction and fractionation, coupled with in vitro fermentation batch culture were used to select the most bioactive fractions of biserrula. The four fractions were then tested against five species of methanogens grown in pure culture. Fraction bioactivity was assessed by measuring methane production and amplification of the methanogen mcrA gene. Treatments that showed bioactivity were subcultured in fresh broth without the bioactive fraction to distinguish between static and cidal effects. All four fractions were active against pure cultures, but the F2 fraction was the most consistent inhibitor of both methane production and cell growth, affecting four species of methanogens and also producing equivocal-cidal effects on the methanogens. Other fractions had selective activity affecting only some methanogens, or reducing either methane production or methanogenic cell growth. In conclusion, the anti-methanogenic activity of biserrula can be linked to compounds contained in selected bioactive fractions, with the F2 fraction strongly affecting key rumen methanogens. Further study is required to identify the specific plant compounds in biserrula that are responsible for the anti-methanogenic activity. These findings will help devise novel strategies to control methanogen populations and activity in the rumen, and consequently contribute in reducing greenhouse gas emissions from ruminants.


Assuntos
Euryarchaeota/efeitos dos fármacos , Fabaceae/química , Metano/antagonistas & inibidores , Extratos Vegetais/farmacologia , Animais , Técnicas de Cultura Celular por Lotes , Bovinos , Fracionamento Químico/métodos , Meios de Cultura/química , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/isolamento & purificação , Euryarchaeota/metabolismo , Fermentação/efeitos dos fármacos , Metano/biossíntese , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Rúmen/microbiologia
14.
Appl Microbiol Biotechnol ; 100(10): 4685-98, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26810199

RESUMO

The response of freshwater bacterial community to anthropogenic disturbance has been well documented, yet the studies of freshwater archaeal community are rare, especially in lotic environments. Here, we investigated planktonic and benthic archaeal communities in a human-perturbed watershed (Jiulong River Watershed, JRW) of southeast China by using Illumina 16S ribosomal RNA gene amplicon sequencing. The results of taxonomic assignments indicated that SAGMGC-1, Methanobacteriaceae, Methanospirillaceae, and Methanoregulaceae were the four most abundant families in surface waters, accounting for 12.65, 23.21, 18.58 and 10.97 % of planktonic communities, whereas Nitrososphaeraceae and Miscellaneous Crenarchaeotic Group occupied more than 49 % of benthic communities. The compositions of archaeal communities and populations in waters and sediments were significantly different from each other. Remarkably, the detection frequencies of families Methanobacteriaceae and Methanospirillaceae, and genera Methanobrevibacter and Methanosphaera in planktonic communities correlated strongly with bacterial fecal indicator, suggesting some parts of methanogenic Archaea may come from fecal contamination. Because soluble reactive phosphorus (SRP) and the ratio of dissolved inorganic nitrogen to SRP instead of nitrogen nutrients showed significant correlation with several planktonic Nitrosopumilus- and Nitrosotalea-like OTUs, Thaumarchaeota may play an unexplored role in biogeochemical cycling of river phosphorus. Multivariate statistical analyses revealed that the variation of α-diversity of planktonic archaeal community was best explained by water temperature, whereas nutrient concentrations and stoichiometry were the significant drivers of ß-diversity of planktonic and benthic communities. Taken together, these results demonstrate that the structure of archaeal communities in the JRW is sensitive to anthropogenic disturbances caused by riparian human activities.


Assuntos
Archaea/crescimento & desenvolvimento , Biomassa , Sedimentos Geológicos/microbiologia , Archaea/classificação , China , DNA Arqueal/isolamento & purificação , Euryarchaeota/classificação , Euryarchaeota/crescimento & desenvolvimento , Methanobacteriaceae/classificação , Methanobacteriaceae/crescimento & desenvolvimento , Methanobrevibacter/classificação , Methanobrevibacter/crescimento & desenvolvimento , Methanosarcinales/classificação , Methanosarcinales/crescimento & desenvolvimento , Methanospirillum/classificação , Methanospirillum/crescimento & desenvolvimento , Nitrogênio/análise , Fósforo/análise , Filogenia , RNA Ribossômico 16S/isolamento & purificação , Rios/microbiologia , Análise de Sequência de DNA , Microbiologia da Água
15.
Prep Biochem Biotechnol ; 46(1): 8-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25286020

RESUMO

Halophilic bacteria respond to salt stress by regulating the cytosolic pools of organic solutes to achieve osmotic equilibrium. In order to understand the metabolic regulation of these organic solutes, for the first time, we have investigated the effect of salt on growth and biochemical changes in four major moderately halophilic bacterial strains isolated from a saltern region of the Kumta coast, India. The strains under study were Halomonas hydrothermalis VITP9, Bacillus aquimaris VITP4, Planococcus maritimus VITP21, and Virgibacillus dokdonensis VITP14, which exhibited similar salt tolerance (0% to 10% w/v NaCl) with optimal growth at 5% w/v NaCl. Biochemical analysis showed that the total intracellular organic solutes increased significantly with increasing NaCl concentration in the growth medium, and the compositions of the solutes were dependent on the type of strain and also on the nutrient richness of the growth medium. Glutamic acid levels increased in all the strains under salt stress, indicating the significance of glutamic acid as the anionic counterpart of K(+)/Na(+) ions and precursor for other synthesized nitrogenous osmolytes. Though initial studies were performed with thin-layer chromatography, mass spectrometry was used to identify the major solutes accumulated by the strains under salt stress, such as proline (VITP4), ectoine (VITP14 and VITP9), and sugars (VITP21) under minimal medium and glycine betaine (by all the strains under study) under complex growth medium conditions. Such comparative study on the stress-dependent metabolic differences of different microbes, under identical experimental condition, helps to identify possible bacterial sources for the production of industrially important solutes.


Assuntos
Euryarchaeota/metabolismo , Cloreto de Sódio , Estresse Fisiológico , Euryarchaeota/classificação , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/fisiologia , Filogenia , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
16.
FEMS Microbiol Ecol ; 91(9): fiv103, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26324856

RESUMO

Plants like sweet clover (Melilotus spp.) are not suitable as fodder for cattle because of harmful effects of the plant secondary metabolite coumarin. As an alternative usage, the applicability of coumarin-rich plants as substrates for biogas production was investigated. When coumarin was added to continuous fermentation processes codigesting grass silage and cow manure, it caused a strong inhibition noticeable as decrease of biogas production by 19% and increase of metabolite concentrations to an organic acids/alkalinity ratio higher than 0.3(gorganic acids) gCaCO3 (-1). Microbial communities of methanogenic archaea were dominated by the genera Methanosarcina (77%) and Methanoculleus (11%). This community composition was not influenced by coumarin addition. The bacterial community analysis unraveled a divergence caused by coumarin addition correlating with the anaerobic degradation of coumarin and the recovery of the biogas process. As a consequence, biogas production resumed similar to the coumarin-free control with a biogas yield of 0.34 LN g(volatile solids) (-1) and at initial metabolite concentrations (∼ 0.2 g(organic acids) gCaCO3 (-1)). Coumarin acts as inhibitor and as substrate during anaerobic digestion. Hence, coumarin-rich plants might be suitable for biogas production, but should only be used after adaptation of the microbial community to coumarin.


Assuntos
Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Cumarínicos/metabolismo , Silagem/microbiologia , Adaptação Fisiológica , Anaerobiose/fisiologia , Euryarchaeota/classificação , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/metabolismo , Fermentação/fisiologia , Esterco/microbiologia , Melilotus/metabolismo , Methanomicrobiaceae/classificação , Methanomicrobiaceae/crescimento & desenvolvimento , Methanosarcina/classificação , Methanosarcina/crescimento & desenvolvimento
17.
Prikl Biokhim Mikrobiol ; 51(4): 377-86, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26353402

RESUMO

Methods of intensifying the anaerobic microbial decomposition of the organic fraction of municipal solid waste (MSW) on an MSW landfill and in anaerobic reactors were studied. It was discovered that it is preferable for the initiation and stabilization of the process of anaerobic digestion of organic waste in laboratory bioreactors at 20 and 50 degrees C to use a mixture of activated suspension of soil from the anaerobic zone of the landfill and digested sewage sludge. Stimulation of methanogenesis was shown in field conditions when digested sewage sludge was added directly into the upper layer of anaerobic zone of the landfill. The investigation of methane production during fermentation of concentrated food waste with a mixture of excessive activated sludge in the laboratory under thermophilic conditions (50 degrees C) has shown that the main problem at the first stage of the process was the acidification of the digested mixture due to the accumulation of volatile fatty acids. It was shown that for stable operation of the bioreactor under thermophilic conditions the amount of inoculum added during the start up should be no less than 30%-50%--based on volatile suspended solids. A sharp decrease in the digestion temperature from 50 to 20 degrees C did not cause methanogenesis termination, since the thermophilically fermented biomass contained both thermophilic and mesophilic methanogens.


Assuntos
Anaerobiose , Euryarchaeota/metabolismo , Eliminação de Resíduos , Reatores Biológicos , Euryarchaeota/crescimento & desenvolvimento , Fermentação , Esgotos
18.
Archaea ; 2015: 483194, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26089742

RESUMO

Our understanding of the genus Natrinema is presently limited due to the lack of available genetic tools. Auxotrophic markers have been widely used to construct genetic systems in bacteria and eukaryotes and in some archaeal species. Here, we isolated four auxotrophic mutants of Natrinema sp. J7-2, via 1-methyl-3-nitro-1-nitroso-guanidin mutagenesis, and designated them as J7-2-1, J7-2-22, J7-2-26, and J7-2-52, respectively. The mutant phenotypes were determined to be auxotrophic for leucine (J7-2-1), arginine (J7-2-22 and J7-2-52), and lysine (J7-2-26). The complete genome and the biosynthetic pathways of amino acids in J7-2 identified that the auxotrophic phenotype of three mutants was due to gene mutations in leuB (J7-2-1), dapD (J7-2-26), and argC (J7-2-52). These auxotrophic phenotypes were employed as selectable makers to establish a transformation method. The transformation efficiencies were determined to be approximately 10(3) transformants per µg DNA. And strains J7-2-1 and J7-2-26 were transformed into prototrophic strains with the wild type genomic DNA, amplified fragments of the corresponding genes, or the integrative plasmids carrying the corresponding genes. Additionally, exogenous genes, bgaH or amyH gene, were expressed successfully in J7-2-1. Thus, we have developed a genetic manipulation system for the Natrinema genus based on the isolated auxotrophic mutants of Natrinema sp. J7-2.


Assuntos
Arginina/metabolismo , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/metabolismo , Leucina/metabolismo , Lisina/metabolismo , Mutação , Vias Biossintéticas/genética , Euryarchaeota/genética , Euryarchaeota/isolamento & purificação , Expressão Gênica , Genética Microbiana/métodos , Genoma Arqueal , Mutagênese , Seleção Genética , Análise de Sequência de DNA , Transformação Genética
19.
FEMS Microbiol Lett ; 362(10)2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25862577

RESUMO

Anaerobic digestion (AD) is an attractive wastewater treatment technology, leading to the generation of recoverable biofuel (methane). Most industrial AD applications, carry excessive heating costs, however, as AD reactors are commonly operated at mesophilic temperatures while handling waste streams discharged at ambient or cold temperatures. Consequently, low-temperature AD represents a cost-effective strategy for wastewater treatment. The comparative investigation of key microbial groups underpinning laboratory-scale AD bioreactors operated at 37, 15 and 7°C was carried out. Community structure was monitored using 16S rRNA clone libraries, while abundance of the most prominent methanogens was investigated using qPCR. In addition, metaproteomics was employed to access the microbial functions carried out in situ. While δ-Proteobacteria were prevalent at 37°C, their abundance decreased dramatically at lower temperatures with inverse trends observed for Bacteroidetes and Firmicutes. Methanobacteriales and Methanosaeta were predominant at all temperatures investigated while Methanomicrobiales abundance increased at 15°C compared to 37 and 7°C. Changes in operating temperature resulted in the differential expression of proteins involved in methanogenesis, which was found to occur in all bioreactors, as corroborated by bioreactors' performance. This study demonstrated the value of employing a polyphasic approach to address microbial community dynamics and highlighted the functional redundancy of AD microbiomes.


Assuntos
Proteínas Arqueais/metabolismo , Reatores Biológicos , Temperatura Baixa , Euryarchaeota/metabolismo , Methanosarcinales/metabolismo , Proteômica/métodos , Esgotos/microbiologia , Águas Residuárias/microbiologia , Anaerobiose , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/isolamento & purificação , Biocombustíveis , Deltaproteobacteria/genética , Deltaproteobacteria/crescimento & desenvolvimento , Deltaproteobacteria/isolamento & purificação , Euryarchaeota/genética , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/isolamento & purificação , Firmicutes/genética , Firmicutes/crescimento & desenvolvimento , Firmicutes/isolamento & purificação , Methanobacteriales/genética , Methanobacteriales/crescimento & desenvolvimento , Methanobacteriales/isolamento & purificação , Methanosarcinales/genética , Methanosarcinales/crescimento & desenvolvimento , Methanosarcinales/isolamento & purificação , Consórcios Microbianos , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
20.
FEMS Microbiol Ecol ; 91(4)2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25764468

RESUMO

The Miscellaneous Crenarchaeotic Group (MCG) is an archaeal lineage whose members are widespread and abundant in marine sediments. MCG archaea have also been consistently found in stratified euxinic lakes. In this work, we have studied archaeal communities in three karstic lakes to reveal potential habitat segregation of MCG subgroups between planktonic and sediment compartments. In the studied lakes, archaeal assemblages were strikingly similar to those of the marine subsurface with predominance of uncultured Halobacteria in the plankton and Thermoplasmata and MCG in anoxic, organic-rich sediments. Multivariate analyses identified sulphide and dissolved organic carbon as predictor variables of archaeal community composition. Quantification of MCG using a newly designed qPCR primer pair that improves coverage for MCG subgroups prevalent in the studied lakes revealed conspicuous populations in both the plankton and the sediment. Subgroups MCG-5a and -5b appear as planktonic specialists thriving in euxinic bottom waters, while subgroup MCG-6 emerges as a generalist group able to cope with varying reducing conditions. Besides, comparison of DNA- and cDNA-based pyrotag libraries revealed that rare subgroups in DNA libraries, i.e. MCG-15, were prevalent in cDNA-based datasets, suggesting that euxinic, organic-rich sediments of karstic lakes provide optimal niches for the activity of some specialized MCG subgroups.


Assuntos
Crenarchaeota/genética , Euryarchaeota/genética , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Sequência de Bases , Crenarchaeota/crescimento & desenvolvimento , Crenarchaeota/isolamento & purificação , DNA Arqueal/genética , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/isolamento & purificação , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , Plâncton/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...